TAMROOK Dril. teech Finland. Montada sabre Channis FORD 2 eyes traseron

Opentivided setual 200 m. de sondes
quantidos
300 m??

Cuents con operarios especializados.

Obtiene muestro molida
Con mortillo ele fondo.

o con botones de video C.Tu

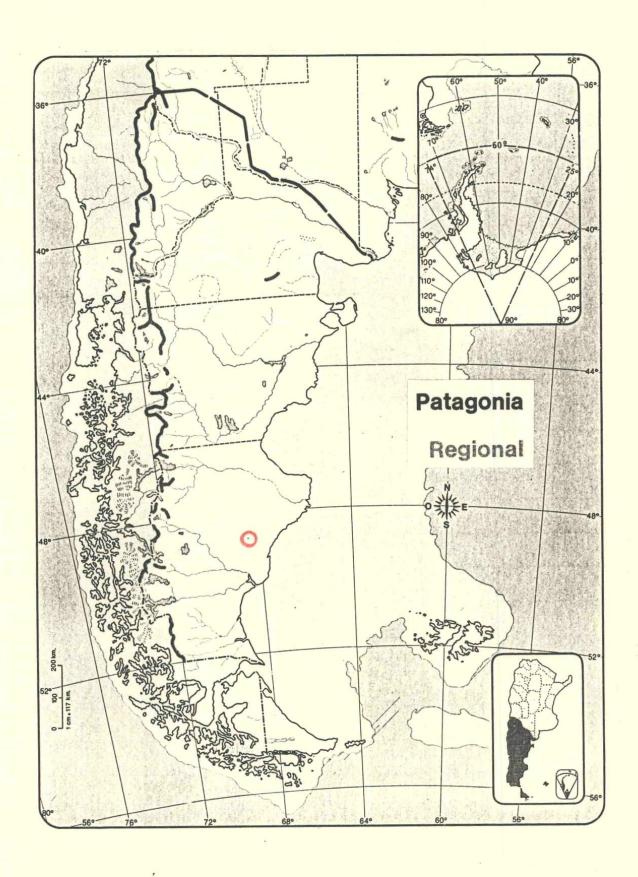
o tricerro — 5/4 pulçada

moterial molido en aqua o seco a 21 Atmosfers
lo eleva a reperficie. —

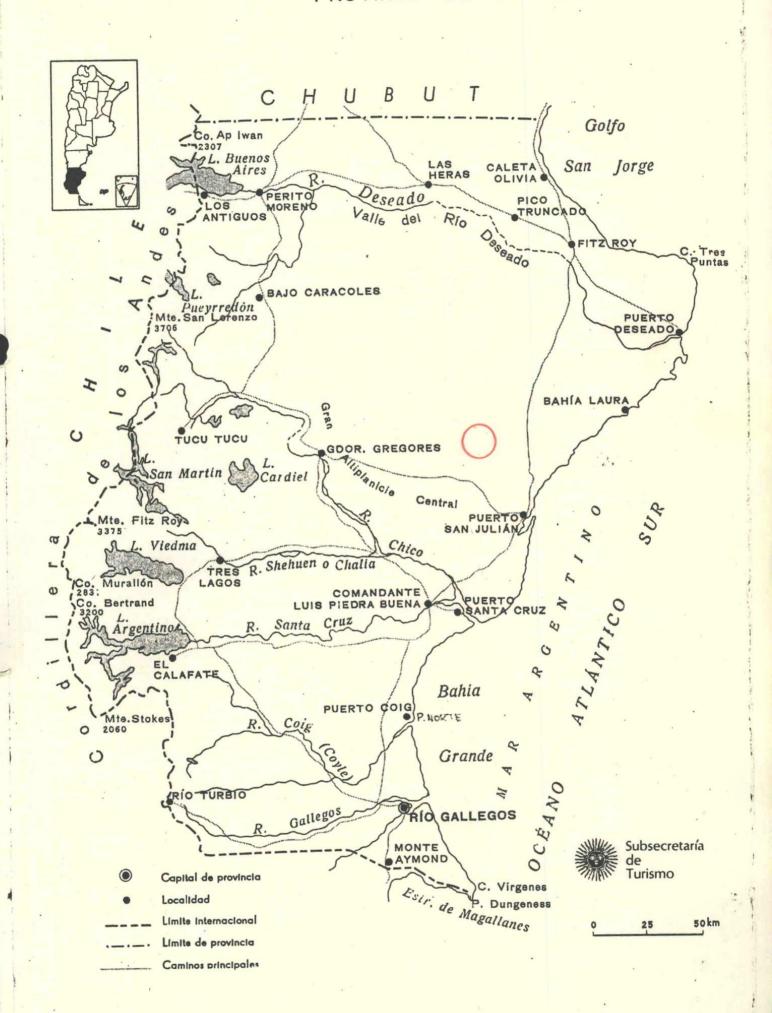
Si MONROY (COCHSTILLO) 744.5493 partic.
34 4196 / 3775

Puede poner en Dreenin FAX con catego de catalogo

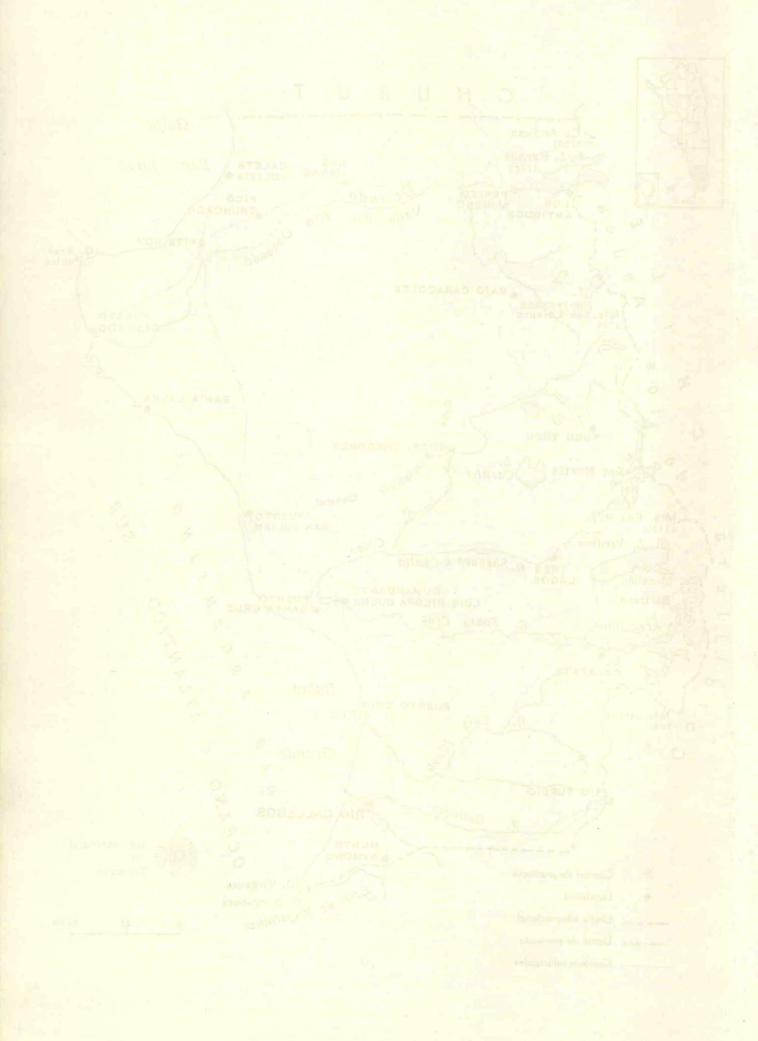
SECRETARIA DE MINERIA


Direccion Nacional de Mineria y Geologia

Centro de Exploracion Patagonia Sur


COMODORO RIVADAVIA

CHUBUT


Proyecto Cerro Vanguardia

PROVINCIA DE SANTA CRUZ

PROVINCIA DE SANTA CRUZ

DIRECCION DE PROMOCION MINERA DEPARTAMENTO DE EVALUACION DE PROYECTOS.

	FICHA DEL YA		MENTO DE E	VALUACION	DE PI	OPECIOS.		
		-		CROQUIS DE	ACCESO	(caminos, ser	nderos, rios,	
	No. de Proyecto 43 Nombre (s) Cerro Vanguardia			a partir de	un punto	conocido).		
	Dueños Fecha							
	Reserva Nacional a							
Z	2 de a						,	
IDENTIFICACION								
S	3 de a							
LIFE	4 de a							
ENJ	מומק מומא מב	ICINAS:Santa	Fe 1548	4.			•	
Q		de Mineria						
	PRODUCTOS P	RINCIPALES: OT	o y Plata					
	PRODUCTOS &	ECUNDARIOS:Ma	anganeso,	ESCALA:				
1.	galena y	blenda						
				COORDENAD	AN CEDI	CDAEICAS:		
	PROVINCIA: Santa Cruz			COORDENADAS GEOGRAFICAS:				
	DEPARTAMENTO: Magallanes			No.4 de la carta topográfica 1:160.000.				
Z	DEI ATTAMENTO.			No. de la carta topográfica 1:200.0:3:				
LOCALIZACION	DISTRITO:			I.G.M.				
17.7	PUNTO LOCALIZADO (Campamento, centro del			No. de la carta geológica 1:200.000				
3		Fotos aéreas nos. :						
LOO	yacimiento, etc.).							
	-		Plan Misión Faja					
	OTRAS REFERE		Plan	IVITSI	un	_ raja		
-								
	RUTA EMPLEA	DA .					31	
	DE	A	MEDIO DE LO	COMOCION	CLASE	CARRETERA	DISTANCIA KM	
	San Julián	Cananand	on	Acfalt	0-Pinio509	130 aprox		
	San Julian	C-vanguard	. Automot	QI.	851011			
0						-		
S						TOTAL_1	30 Km	
E			San T	นไว่ลัก				
O	Ciudad o Pueblo importante más cercano San Julián Distancia Km. 130							
O	Estación de FF.CC. más próxima: a Km. conectada por							
<	Aeropuerto o Pista más próxima: San Julián a 130 Km. conectada por asf/ri							
	Fuente de Agua permanente próxima: a Km. conectada por							
	Line Ita Tensió							
	Ellipe I Ellisio	ii iiius proxiiiia.				Tim Propiosi		
	Disponibilidad de Mano de obra Normal							
	Relieve Topográfico. Suave Clima Frão, seco y ventoso							

)							
	GEOLOGIA REGIONAL: Ambiente Volcánico-Subvolvánico							
- show	ESTRUCTURA REGIONAL: Fracturación - Plegamiento							
	RELACION DE LA ZONA MINERALIZADA CON ESTA ESTRUCTURA: Discordante							
-	LITOLOGIA, ESTRATIGRAFIA, EDAD GEOLOGICAEn el extremo nordeste del área							
ā	aflora la Fm. Roca Blanca de edad Liásica media a superior, caracteriza-							
	da litológicamente por sedimentita y piroclastitas, sobre la misma y							
	por medio de una discordancia erosiva se dispone la Fm Chon-Aike (Ju-							
1 ×	rásica media) caracterizada por lavas-ignimbritas y tobas. Esta uni-							
310	dad es roca de caja de la mineralización. Está afectada por fallamien-							
REGIONAL	to en bloques del basamento, reflejado en la cobertura del mismo. En							
	el área de trabajo no se han identificado unidades que respondan al							
GEOLOGICO	lapso Jurásico superior-Mitceno. Posteriormente se producen efusiones							
000	basí ticas terciarias y cuartarias. La secuencia termina con rodados patagónicos y sedimentos inconsolidados diversos.							
E01	Pattagonitos y sedimentos inconsolidados diversos.							
5								
0								
CONTEXTO								
LN								
CC								
	METAMORFISMO: No se ha determinado en el marco regional ni en el local							
-	la presencia de metamorfitas.							
	a) TIPO DE PLEGAMIENTO: flexión DESCRIPCION: Afectan a las Fm La							
-	(actitud)							
	Matilde, Baso Grande y Baquero. Corresponden a braquianticlinales y							
	Braquisinclinales de reducidas dimensiones y escasa inclinación. (Panza 1982).							
	RELACIONES CON LA ZONA MINERALIZADA: Longitudinal Transversal							
LOCALES	No se ha determinado fehacientemente si la zona mineralizada está com-							
8	prendida en estos pliegues. Geólogos de Y.P.F. señalan la posibilidad de que en esta zona se prolongue el llamado anticinal de roca Blanca.							
	que en esta sena se prototigue et stamado articistinas de roca Branca.							
SVS	b) TIPO DE EALLAMIENTO DESCRIPCION.							
5	b) TIPO DE FALLAMIENTO Directo DESCRIPCION: Al área corresponde un sistema de fallamiento con rumbo N50/60E. De carácter tensional							
ESTRUCTURAS	y con poco rechazo vertical. Otro sistema cruza la estancia Laguna							
EST	Blanca con rumbo N40°O, desplazado por el anterior.							
	RELACIONES CON LA MINERALIZACION: Longitudinal Transversal Las vetas de manganeso podrían relacionarse con la falla Laguna Blan-							
ca. Numerosas fracturas con rumbo general E-O cruzan el prea minera								
	lizada. En general la expresión superficial de estas fallas es esca-							
	sa, salvo aquellas con planos y espejos desarrollados.							

RECOMENDACIONES:

1. OBJETIVOS:

2. TRABAJOS PROGRAMADOS:

ETAPA 1.

ETAPA 2.

ETAPA 3.

3. CRONOGRAMA:

4. PRESUPUESTO:

ETAPA 1.

ETAPA 2.

ETAPA 3.

TOTAL PRESUPUESTO DE PREINVERSION:

LAGUNA BLANCA

PUNTAJE ASIGNADO:

1.- Tamaño del yacimiento

2.- Valor recuperable por TM

3.- Productividad

4.- Condiciones de exploración. 3

2.- Condiciones locales.

COEFICIENTE: Ingreso Neto Actualizado/Inversión.

1.- VALOR DE MENA (VM).

							Witness Transport of the Party
	VALOR	VALOR POR TONE-	CASTIGOS	DILUCION	RECUPE	LEY	V M
MINERAL	UNITARIO	LADA DE	DE001105	DE	RACION		
	U\$S/u de Pe-	MINERAL	MAQUILA	MINA.	R (%)	MEDIA	U\$S/TM
, /		U\$S/TMF	1- (1/-)	1-D(1/2)	100	100	1
				100			
ORO	11U\$S/g	16,5 U\$S/t	0,75	0,90	0,80	1,5g.	8,91
PLATA	0,24U\$\$	12,76U\$S/t	0,75	0,90	0,80	53,2g.	6,89
PLOMO	747U\$STM	1,860\$8	0,75	0,90	0,85	0,25%	1,06
ZINC	747U\$STM	0,29	0,75	0,90	0,90	0,04%	0,17
							:
Σ! 17.						17.03	

2.- RESERVAS (R) 1.224.585 Tn T'P'D' 400 VIDA de la MINA (L) 10

3.- COSTO PROD.EST. (P) 33,5 INV'EST' (c) _____FACTOR ACTUALIZACION ___

4.- INGRESO NETO: R (VM - P); INGRESO NETO ACTUALIZADO INA; -

COEFICIENTE INA/C =

Jain fatterini ADOCFO

SECTOR CO VANGUARDIA

PUNTAJE ASIGNADO:

Diques cuarzo-a uriferos

	4	
I Tamaño del yacimiento ——— 2 Valor recuperable por TM ——	3	
3 Productividad	3	
4 Condiciones de exploración	3	-
5 Conditiones locales	2	
TOTAL	15	

TOTAL

COEFICIENTE: Ingreso Neto Actualizado/Inversión.

1.- VALOR DE MENA (VM).

MINERAL	VALOR UNITARIO U\$S/u de Pe- so.	VALOR POR TONE- LADA DE MINERAL U\$S/TMF	DECALIAS	DILUCION DE MINA. 1 - D (1/2)	RECUPE- RACION	MEDIA	VM U\$S/TM
drd	11 U\$S	62,37	0,90	0,90	0,80	5,67g	/t 40,41
PLATA	0,24 U\$S	17,51 " 180.000 -	0,90	0,90	0,80	72,97g	/t 11,34
Σ 51,75							

2.- RESERVAS (R) 1.287.900 tn T'P'D' 400 VIDA de la MINA (L) 10

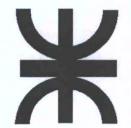
3.- COSTO PROD.EST. (P) 33.5 INV'EST' (c)11.800.000CTOR ACTUALIZACIONO.56502

4.- INGRESO NETO: R (VM - P) :23.504.175 U\$S INGRESO NETO ACTUALIZADO INA: 13.280.328 U\$S

COEFICIENTE INA/C = 1,12

INVERSIONES:

Evaluación Previa	,
Etapa 3 TOTAL EXPLORACION. 2. INVERSIONES INDUSTRIALES - Capital de Operaciones - Activos Fijos e Infraestructura— TOTAL INVERSIONES INDUSTRIALES.	
TOTAL EXPLORACION. 2. INVERSIONES INDUSTRIALES - Capital de Operaciones - Activos Fijos e Infraestructura TOTAL INVERSIONES INDUSTRIALES.	
TOTAL EXPLORACION. 2. INVERSIONES INDUSTRIALES - Capital de Operaciones - Activos Fijos e Infraestructura————————————————————————————————————	,
2. INVERSIONES INDUSTRIALES - Capital de Operaciones - Activos Fijos e Infraestructura————————————————————————————————————	
- Capital de Operaciones - Activos Fijos e Infraestructura————————————————————————————————————	
- Capital de Operaciones - Activos Fijos e Infraestructura————————————————————————————————————	
- Capital de Operaciones - Activos Fijos e Infraestructura————————————————————————————————————	
- Activos Fijos e Infraestructura————————————————————————————————————	
TOTAL INVERSIONES INDUSTRIALES.	
3. TOTAL INVERSIONES: U\$S	
3. TOTAL INVERSIONES: U\$S	
3. TOTAL INVERSIONES: U\$S	


ANEXO

PARA CALCULOS

PARA CALCULOS

RESTAN

MAPAS

